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What is a graph/network?

●Encoding of entities and their relationships
● Entities are nodes
● Relationships are edges

●Can be directed or undirected
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Applications

●Graphs have many applications
● Social Networks (e.g. Facebook, Twitter, etc.)
● Biological Networks (e.g. Gene/Protein interact)
● Citation Networks
● Computer/Software Networks

●Encoding provides a way to reason about higher 
order relations in this data
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What is Graph Mining?

●Finding structure automatically in graphs
●Application of Data Mining to Networks
●Types of Graph Mining

● Community Finding
● Link Prediction
● Subgraph Matching

l ...
● Focus on community finding in this talk
● Relationship to clustering 
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What is Community Finding?

● Separate out graph into highly connected 
components

● Break few edges
● Cluster has strong
connectivity

6



●Identifies components that are highly connected
●In applications, these often mean something

● Social Networks – social communities
● Protien Networks – similar function
● Citation Networks – fields of a discipline

●Highly connected components usually have 
meaning in network analysis
●Makes sense to detect them!
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Community Finding Approaches

●Extensive research in community finding
●Many algorithms exist 

● commonly O(m) for m edges
●Examples:

● Girvan & Newman 2004
● Blondel et al. 2008
● Palla et. al. 2005 (Cfinder)
● Rosvall & Bergstrom 2008 (Infomap)

●Issue:  Results not always deterministic
● Get to this in a second...

8



How Does Infomap Work?

● Optimises division of graph into tightly connected 
components

● It does this via probabilities, but there is a nice 
analogue via physical analogy 
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http://www.mapequation.org
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Random Walk Transmission

Video

http://www.mapequation.org 



Community Finding Study

● Empirical study testing leading algorithms against 
each other

Andrea Lancichinetti and Santo Fortunato.
Community detection algorithms: A comparative analysis.  
Phys. Rev. E 80, 056117, 2009.

● Experiment exhaustively testing community finding 
approaches by comparing them to known ground 
truth (LFR benchmark)  
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Evaluating the Output

● Normalized Mutual Information (NMI) is used to 
evaluate the similarity between two sets of 
communities.

● Metric measure degree of match between the 
nodes in each community
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Study Procedure

1.Generate community structure using LFR.  This 
gives a graph and a correct answer.

2.For each algorithm, try and detect this community 
structure

3.Use NMI to compare the detected communities to 
the correct answer
● The closer to 1 means the closer to the embedded 
ground truth 
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Study Results

● Infomap performed the best.
● Blondel et al. 2008  and Girvan & Newman 2004 
also performing well

● In addition the study tested random graphs, where 
there should be no community structure, and found 
these algorithms performed well in this 
circumstance
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Stability Issues

● Community finding approaches require random 
seeds

● Therefore, different outputs could occur for the 
same run of the program

● A solution:  report the average community structure
● This is known as consensus clustering

l Andrea Lancichinetti and Santo Fortunato.  Consensus 
clustering in complex networks. Nature Scientific Reports 2 
(336).
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Human Centred Results

● Similar results found from a human centred 
perspective

Alexandra Lee and Daniel Archambault. Communities Found by 
Users -- not Algorithms: Comparing Human and Algorithmically 
Generated Communities.  ACM Conference on Human Factors 
in Information Systems (Note, ACM CHI 16), 2396-2400, 2016.

● Study compared human annotated communities with 
automatically found ones
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Multivariate-Based Visualization
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●Early work on visualization methods for multivariate 
graphs

● ASK-Graph View and GrouseFlocks
● TugGraph
● Semantic Substrates
● Pretorius thesis



ASK-Graph and GrouseFlocks

●Visualization method for large clustered networks 

●Attribute driven clustering 
and visualization of 
networks 
● Draw clusters on demand
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TugGraph

If interested in the area around a node or 
component can tug out structure nearby
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Semantic Substrates 

Network visualization where spatial position 
encodes attribute values
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Pretorius et al. 

l Extensive work on multivariate and state transition 
graphs

l EuroVis 2008 paper on multivariate graphs is 
especially interesting
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Book on Multivariate Graphs

Springer book on this topic as the result of a recent 
Dagstuhl workshop

http://www.springer.com/us/book/9783319067926

. 
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http://www.springer.com/us/book/9783319067926


Relevant Surveys

Very nice survey on graph visualization:

von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., 
van Wijk, J.J., Fekete, J.-D. and Fellner, D.W. (2011), Visual 
Analysis of Large Graphs: State-of-the-Art and Future Research 
Challenges. Computer Graphics Forum, 30: 1719–1749. 

Recent STAR on Dynamic Graphs:

Fabian Beck, Michael Burch, Stephan Diehl, and Daniel 
Weiskopf. The State of the Art in Visualizing Dynamic Graphs. 
In Proceedings of State-of-the-Art Reports of EuroVis 2014.
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NMI Software and 
Community Finding

Link to Infomap Community Finding Algorithm:
http://www.mapequation.org/code.html

Link to Normalized Mutual Information Code:
https://github.com/aaronmcdaid/Overlapping-NMI

Full Fortunato Survey:
https://arxiv.org/abs/0906.0612
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https://github.com/aaronmcdaid/Overlapping-NMI


Visualization Meets ML

● Over the course of the day, we have explored many 
different techniques for automatically finding 
patterns in data

● In this room, many of us are visualization experts

● We are only beginning to determine ways which 
visualization and machine learning can work 
together.

● Mostly going to concentrate on my experience
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Example Churn Analytics
● Very large graph of nearly 1 billion edges
● Summaries of components enriched in churn
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Twitter Analysis

● How do you look at tens of millions of Tweets?

● Worked with members of a network analytics and 
data mining group to create a dashboard for 
navigating these tweets.

● Discover areas enriched in a topic or highly positive 
and/or negative.
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Example Twitter Analysis
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Example Twitter Analysis
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Expect the Unexpected
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● What is going on here?

● Why are people positive about these topics?



Blog Analysis
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● PhD Student in English asked what does the Irish 
Blogosphere look like?

● Text perspective of 
language used



Blog Analysis
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● Decomposition of discussion via link structure



Blog Analysis
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● Recommendations to English researcher



Discussion

Reflecting on today's activities, how can our two 
fields better collaborate?  What avenues of research 
do you feel are the most fruitful?
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