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Linear projection may not be enough
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PCA fails to separate the clusters (you don’t see
cluster structure from the 1D visualization)

For this data a different linear projection could be enough.



Nonlinear data
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The first principal component is given by the red line. The green line on
the right gives the “correct” non-linear direction of variation (which

PCA is of course unable to find).



Manifolds
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• PCA would not find
the “correct” 1D
manifold (green)
because a) PCA is
constrained to a linear
mapping and b) PCA
tries to preserve
global features.

• Often, preserving local
features, like
neighborhoods, is
more important than
global properties.



Manifolds
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Many dimensionality reduction approaches are based on the concept
of manifold learning: the high-dimensional data is assumed to lie on
a lower-dimensional “sheet” folded into a complicated shape in the
high-dimensional space.

The idea is: if we know the dimensionality of the underlying manifold,
then using that as the output dimensionality of nonlinear
dimensionality reduction can “recover” the manifold.

--------> Benchmark tests with artificial manifolds
             (swiss roll, loops, s-curve, etc.)



Intrinsic dimensionality
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How many dimensions are needed with
nonlinear dimensionality reduction?

Box-counting dimension: 
● make a hypercube around 

all the data
● divide it into a grid of smaller 

hypercubes of length
● only           of them contain data
● when     shrinks,               

estimates 
dimensionality 



Intrinsic dimensionality
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How many dimensions are needed with
nonlinear dimensionality reduction?

PCA-based local estimate: 
● decompose the space into local 

patches, e.g. a grid or by clustering
● carry out PCA on each local 

patch, find out number of 
dimensions needed to preserve 
e.g. 90% of variance.

● dimension of the manifold = 
average over local PCAs 
(weighted by number of points in each patch)



Nonlinear dimensionality reduction
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Aim: Represent high-dimensional data by low-
dimensional counterparts preserving as much
information as possible

Ill-posed problem: which information in data is
relevant to the user? (dependent on the specific data
domain and situation at hand)

Huge variety of methods proposed with different
properties



Nonlinear methods
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• Multidimensional scaling (MDS) - preserves global distances

• Sammon’s projection - variation of MDS, focuses on short
distances 

• Isometric mapping of data manifolds (ISOMAP) - a graph-
based method 

• Curvilinear component analysis (CCA) - MDS-like method that
tries to preserve distances in small neighborhoods

• Maximum variance unfolding - maximizes variance with the
constraint that the short distances are preserved  (an exercise in
semidefinite programming) 

• Neighbor retrieval visualizer (NeRV): family of methods
preserving neighborhood relationships as an information retrieval
task. Special cases include stochastic neighbor embedding 
and t-SNE



Group 1: Spectral methods
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Spectral techniques: they rely on the spectrum of the
neighborhood graph of the data, preserving important
properties of it.

Example methods: Locally Linear Embedding (LLE),
Isomap, Laplacian Eigenmaps

usually unique algebraic solution of the objective

in order to make the cost functions unimodal and to
make algebraic solution of objective possible, the
methods are based on very simple affinity functions



Group 2: Nonparametric methods
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Non-parametric methods: they usually do not find a
general mapping function from a high-dimensional
space to a lower-dimensional space, instead they find
a mapping a finite data set

They can use more complicated affinities between
data points, but it comes with higher computational
costs

Additional modeling/optimization and computational
effort must be done for out-of-sample extension (for
mapping new data points that were not in the training
set)



Group 3: Explicit mapping
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Explicit mapping functions: some methods explicitly
learn a (non-)linear mapping function

linear functions: Principal Component Analysis, Linear
Discriminant Analysis

nonlinear functions: autoencoder networks, locally
linear coordination



Multidimensional scaling (MDS)
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• Multidimensional scaling (MDS) is a dimension
reduction method that tries to preserve a measure
of similarity (or dissimilarity or distance) between
pairs of data points

• MDS has roots in psychology

• MDS can be used as

- an exploratory visualization technique to find
the structure of the data; and

- a tool to test hypothesis.

• MDS only requires distances, known high-dim.
coordinates are not needed



MDS for colors
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• Psychological test in 1950’s: how is the similarity of colors
perceived?

• Pairs of 14 colors were rated by 31 people. Ratings were
averaged.



MDS for colors, result
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The 14 colors were then projected by MDS (trying to preserve similarities)
into 2D and 3D representations. The 2D representation shows that the red-
violet (wavelength 434 nm) is perceived quite similar to blue-violet
(wavelength 674 nm)



MDS definition
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● An MDS algorithm is given the original distances pij 
(called proximities) between data points i and j 

● MDS tries to find a low-dimensional (usually 2-3D)
representation for the points with some coordinates X 

● MDS minimizes the error function (stress) 

where dij(X) is the Euclidean distance between the data
points i and j in representation X; 

and f is a function that defines the MDS model (next slide). 



MDS variants
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The choice of f defines the MDS model. For example:

• f(pij)=pij - absolute MDS (linear model, = PCA)

• f(pij)=b pij - ratio MDS (linear model)

• f(pij)=a+b pij - interval MDS (linear model)

• f(pij)=a+b log pij - useful in psychology

• f(pij) is any monotonically increasing function (ordinal
or nonmetric MDS)



Goodness of MDS
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There are two classical visualizations of MDS goodness:
● Shepard diagram shows low-dimensional distances dij

(white circles) and target disparities f(pij) (filled circles) as
a function of high-dimensional proximities pij.

● Scree plot helps pick an output dimensionality. It shows
the MDS cost (stress) as a function of the dimensionality

Shepard diagrams of 2D
and 1D MDS projections of

the color data.



MDS properties
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● Often, large distances yield large stress if they are not
preserved. In such a situation, MDS tries to preserve the
large distances at the expense of small ones, hence, it
can “collapse” some small distances on the expense of
preserving large distances

● MDS is not guaranteed to find the global optimum of the
stress (cost) function, nor it is guaranteed to converge to
the same solution at each run (many of the MDS
algorithms are quite good and reliable, though)



MDS properties
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● MDS algorithms typically have running times of the
order O(N2), where N is the number of data items. This
is not very good: N=1,000 data items are ok, but
N=1,000,000 is getting very slow.

● Some solutions: use landmark points (i.e., use MDS
only on a subset of data points and place the remaining
points according to those, use MDS on cluster centroids
etc.), use some other algorithm or modification of MDS.



Sammon mapping
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● The Sammon mapping increases the importance of small
distances and decreases the importance of large distances 
→ nonlinear mapping

● It is considered a non-linear approach as the projection cannot
be represented as a linear combination of the original variables
as possible in techniques such as PCA.

● The minimization can be performed e.g. by gradient descent.
The number of iterations need to be experimentally determined
and convergent solutions are not always guaranteed. Many
implementations prefer to use the first PCA components as a
starting configuration.



Curvilinear component analysis
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• Curvilinear component analysis (CCA; Demartines,
Hérault, 1997) is like MDS, but only short distances 
on the display are taken into account.

• The cost function is

where F(d,λy) equals unity, if d<λy, and zero otherwise;
and d denotes the Euclidean distance of points in the
original space (x) and in the projection (y), respectively.
(Actually, F(d,λy), could be any monotonically decreasing
function in d.)



Isomap
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Multidimensional scaling methods tried to preserve all
squared distances —> preservation of largest distances
had biggest effect on the cost

Methods like Sammon’s mapping and Curvilinear
Component Analysis tried to focus more on accurate
preservation of small distances in the original space
(Sammon) or accurateness of small on-screen distances
(Curvilinear Component Analysis).

These methods essentially partly sacrifice preservation of
large distances in favour of preserving small ones.
What if we want to try to also preserve large distances?



Isomap
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If the data lies along a manifold embedded in a high-
dimensional space, long Euclidean distances might not
follow the manifold. Therefore directly preserving long
Euclidean distances would not “unfold” the manifold.

Euclidean distance between
two points corresponds to 
the length of the line
connecting the points.  The 
line usually does not follow 
the manifold of the data.



Isomap
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Euclidean distance in the original space might not be
appropriate. Isomap:
● Replace by geodesic distance (Joshua B. Tenenbaum,

Vin de Silva, and John C. Langford, “A Global Geometric
Framework for Nonlinear Dimensionality Reduction”,
Science, 2000)

● Approximate geodesic distance as shortest distance
along a neighbourhood graph of the data.



Isomap
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Construct neighborhood graph (k neighborhood or   -balls) and
compute shortest path length along the graph between all pairs of
points: 
• first compute distance to the neighbors of each point, and

write this as a distance matrix (set distance to non-neighbors
to infinity). 

• Then use Dijkstra’s algorithm to find shortest distance along
the graph from a point to all other points. 



Isomap
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Afterwards follow standard MDS procedure. Standard
MDS code can be used, the difference is only in how the
original distances are computed.

Yields low-dimensional coordinates whose Euclidean
squared distances best approximate the squared
shortest-path distances. 
 



Isomap
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Neighborhood graph (1000 data points, 7 neighbors connected to
each), geodesic approximated by shortest path along the graph.

Swiss roll example:
Euclidean distance
can “jump” across
the manifold, while
the “ideal” distance
goes along the
manifold.



Isomap
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Two-dimensional
embedding computed by
MDS, to preserve the
approximate squared
geodesic distances, as
squared Euclidean
distances on the display. 

High-dim. geodesics are
approximated directly by
the low-dim. straight-line
distances (not by shortest
paths along the graph)



Curvilinear distance analysis
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• Recall Curvilinear component analysis (CCA) is like
MDS, but only short distances on the display are taken
into account.

• Curvilinear distance analysis (CDA) is the same,
except the d(xi,xj) are computed as distances along a
neighbourhood graph, just like in Isomap!

• Short distances on the display preserve high-dim.
geodesics

Poorly approximated long distances can distort Isomap. CDA
distorts less, since it focuses on small distances.



Neighborhood preservation
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The dimensionality reduction methods discussed so far
have been based on preservation of distances.

● E.g. MDS stress measured distance preservation.

Other variants have modified which distances are most
important to preserve: 
● Sammon's mapping and CCA consider small distances

the most important to preserve. 
● Isomap and CCA modified the original distances to be

preserved. 
But the aim is still to preserve distances.

Are distances the important thing to the analyst, if the
aim is information visualization?



Neighborhood preservation
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Neighbors are an important concept in many applications:
neighboring cities, friends on social networks, followers of blogs,
links between webpages.---> Preserve neighbors instead of
distances?
 

In vectorial data, if nothing else is known, it is reasonable that
close-by points in some metric can be considered neighbors.

Hard neighborhood -
each point is a neighbor
or a non-neighbor



Neighborhood preservation
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Neighbors are an important concept in many applications:
neighboring cities, friends on social networks, followers of blogs,
links between webpages.---> Preserve neighbors instead of
distances?
 

In vectorial data, if nothing else is known, it is reasonable that
close-by points in some metric can be considered neighbors.

Soft neighborhood -
each point is a neighbor
with some weight and a 
non-neighbor with some 
weight



Neighborhood preservation
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Neighbors are an important concept in many applications:
neighboring cities, friends on social networks, followers of blogs,
links between webpages.---> Preserve neighbors instead of
distances?
 

In vectorial data, if nothing else is known, it is reasonable that
close-by points in some metric can be considered neighbors.

Probabilistic neighborhood

(probability for j to be picked 
as a neighbor of i in input 
space)



Neighborhood preservation

35

In vectorial data, if nothing else is known, it is reasonable that
close-by points in some metric can be considered neighbors.

Probabilistic input neighborhood 

(probability to be picked as a neighbor)

Probabilistic output neighborhood

(probability based on display coords.)



Stochastic neighbor embedding
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Two probability distributions over a set of items can be
compared by the Kullback-Leibler (KL) divergence = relative
entropy = amount of surprise when encountering items from the
1st distribution when items were expected to come from the 2nd .

Use KL divergence to compare neighborhoods between the
input and the output!

KL divergence is nonnegative, and zero if and only if the
distributions are equal. The value of the divergence sum
depends on output coordinates, and can be minimized with
respect to them. This is Stochastic Neighbor Embedding.



Stochastic neighbor embedding
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SNE applied 
to grayscale 
bitmap images 
of handwritten 
digits. 

Features = 
pixel values



Stochastic neighbor embedding
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SNE of NIPS
conference authors

Data items = Authors
of NIPS papers

Features=
vectors of
word counts

(how many of
each word does
an author have
in his/her
NIPS papers)



Stochastic neighbor embedding
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Sometimes if the output space is much lower dimensional than
the input space, it can be hard to keep all neighbors close by.
This can lead to a crowding problem where a lot of data ends up
clumped near the middle of a display.

Proposal to avoid crowding: 1. Use a joint distribution over pairs
instead of conditional distributions of neighbors, 2. Use a different
mathematical form for the output-space distribution.

Minimizing this objective
is called t-distributed
SNE. 

It can give better embeddings. Downside: it can cause distortions
because forms of input/output neighborhoods do not match.



Dimensionality reduction for a task
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Algorithmic approaches to preserve various things can be seen
as guesswork about what will produce the most useful visualization
for an analyst.

Manifold learning assumes the manifold can be found and
unfolded. Even if manifolds exist in real-life data sets, their
dimensionality  may be too high to be visualized. -----> The
manifold learning assumption can be ill-suited for visualization.

Quality of dimensionality reduction should be quantified for a task of
visualization.
 



Dimensionality reduction for a task
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Purpose of visualization (one possible definition): to generate
insights about the data in the mind of the analyst.
----> hard to quantify what works best for this
-----> instead of “finding insight”, is there some simpler task that we
could perform dimensionality reduction for?

Preservation of distances is good if the analyst wants to measure
distances between data points. But is that a common task?
------> Maybe in some applications (map projections), not generally

Analyzing neighborhoods can be a subtask in gaining high-
insight: e.g. high-level graph structure (hubs, outliers) arises out of
local neighborhoods.

It turns out that preservation of neighborhoods can be formulated
as optimization of an information retrieval task.



Neighbor retrieval visualizer
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Example data set



Neighbor retrieval visualizer

43

“Orange-peel map”



Neighbor retrieval visualizer
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“Squashed-flat sphere”



Neighbor retrieval visualizer
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Minimize errors for best information retrieval.



Neighbor retrieval visualizer
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Embedding minimizes misses (neighbors
that were not retrieved)

Embedding minimizes false positives
(falsely retrieved neighbors)

A B



Neighbor retrieval visualizer
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Good Precision: Points that are close in the
“reduced” space are close in the original space

1− precision=
|P i

C∩Q i|
|Q i|

Proportion of 
false positives



Neighbor retrieval visualizer
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Good Recall: Points that are close in the original
space are close in the “reduced” space

● In general, cannot get both best precision and best recall

1−recall=
Qi
C∩P i
∣P i∣

Proportion of 
missed neighbors

● Sometimes shown as precision-recall curves with
respect to size of output neighborhood.



Neighbor retrieval visualizer
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Neighbor retrieval visualizer
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Input neighborhood Output neighborhood

∑
i
∑
j≠i
p j∣i log

p j∣i
q j∣i

Recall:

Precision and recall can be extended to probabilistic
neighborhoods



Neighbor retrieval visualizer
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Input neighborhood Output neighborhood

Precision and recall can be extended to probabilistic
neighborhoods

∑
i
∑
j≠i
q j∣i log

q j∣i
p j∣i

Precision:



Neighbor retrieval visualizer
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Input neighborhood Output neighborhood

Tradeoff measure for recall (cost of misses) and
precision (cost of false neighbors)

Minimize with respect to output coordinates y
i

● Cost function directly measures suitability of the
visualization for a neigbor retrieval task

● Stochastic neighbor embedding is the special case     = 0,
only minimizes misses. NeRV minimizes any tradeoff.



Neighbor retrieval visualizer
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● NeRV
visualization of
face images



Neighbor retrieval visualizer
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Comparison among several visualization
methods in terms of the novel (for visualization)
information retrieval measures



Neighbor retrieval visualizer, variants
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● Linear projection: same cost 
function, projection restricted 
to be linear

● t-distribution in the output space. t-SNE is a special case
minimizing misses only



Neighbor retrieval visualizer, variants
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● supervised visualization: define
neighbors in a (nonlinear) metric 
learnt from labels

● interactive visualization: learn
a metric from user feedback on
which data should be neighbors,
visualize iteratively to preserve
neighbors in estimated metric



Neighbor retrieval, fast computation
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58000 space shuttle
states during flight,
computation time

3.2 hours

70000 digit images
in different styles,
computation time

1.6 hours

Neighbor embedding is state 
of the art but takes quadratic time. 
New O(N logN) methods based on 
Barnes-Hut approximation:
sums over far-away neighbors 
approximated by cluster-means

          (Yang,
Peltonen and
Kaski, ICML

2013)



Summary
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● Multidimensional Scaling: preserves distances
● Sammon mapping: preserves small original distances
● Curvilinear Component Analysis: preserves small

output distances
● Isomap and Curvilinear Distance Analysis: preserves

geodesic distances
● Neighbor retrieval visualizer: preserves

neighborhoods, optimized for information retrieval.
Stochastic neighbor embedding and t-SNE are special
cases minimizing misses only.
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